Biblio
Export 30 results:
Author Title [ Type
Filters: Author is Bromberg, Facundo [Clear All Filters]
Visión computacional y aprendizaje de máquinas aplicado a la estimación de activación muscular del bíceps braquial. Universidad Nacional del Centro de la Provincia de Buenos Aires - Facultad de Ciencias Exactas. Computer Science Ph.D:63.
.
2018. Markov networks structure discovery using independence tests. Computer Science. Doctor of Philosophy:182.
.
2007. El enfoque IBMAP para aprendizaje de estructuras de redes de Markov. Tesis doctoral en Facultad de Ciencias Exactas - Universidad Nacional del Centro de la Provincia de Buenos Aires. Director: Facundo Bromberg. . Doctorado en Ciencias de la Computación (PhD in Computer Science):138.
.
2014. .
2013. .
2016.
Prediction of frost events using machine learning and IoT sensing devices. IEEE Internet of Things Journal. 5(6):4589-4597.
.
2018. Learning Markov networks networks with context-specific independences.. International Journal on Artificial Intelligence Tools. 23(06)
.
2014. Improving the reliability of causal discovery from small data sets using argumentation. The Journal of Machine Learning Research. 10:301–340.
.
2009. Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines. Computers and Electronics in Agriculture. 135:81-95.
.
2017. The IBMAP approach for Markov network structure learning. Annals of Mathematics and Artificial Intelligence. 72(3):197--223.
.
2014. Guest Editorial: 10th Argentinean Symposium on Artificial Intelligence (ASAI 2009). Inteligencia Artificial.. 13(44):4.
.
2009. Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification. Computers in Industry. 99C (Special Issue on Machine Vision for Outdoor Environments):303-312.
.
2018. Efficient Markov network structure discovery using independence tests. Journal of Artificial Intelligence Research. 35:449–484.
.
2009. Efficient Markov network discovery using particle filters. Computational Intelligence. 25(4):367–394.
.
2009. Blankets Joint Posterior score for learning Markov network structures . International Journal of Approximate Reasoning. https://doi.org/10.1016/j.ijar.2017.10.018
.
2017. An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection. Expert Systems with Applications. 39:1822–1829.
.
2012. Learning Markov Network Structure using Few Independence Tests.. SIAM Data Mining. :680--691.
.
2008. Estimación de carga muscular mediante imágenes. Argentinean Symposium of Artificial Intelligence (ASAI) - Jornadas Argentinas de Informática. :91--98.
.
2014. Efficient Markov network structure discovery using independence tests. Proceedings of the SIAM Conference in Data Mining. :141--152.
.
2006. Efficient and Robust Independence-Based Markov Network Structure Discovery.. 20th International Joint Conference of Artificial Inteliigence (IJCAI). :2431-2436.
.
2007. Characterization of LQI behavior in WSN for glacier area in Patagonia Argentina. Embedded Systems (SASE/CASE), 2013 Fourth Argentine Symposium and Conference on. :1--6.
.
2013. Variante de grow shrink para mejorar la calidad de markov blankets. XXXV Latin American Informatics Conference (CLEI), Pelotas, Brasil.
.
2009. Speeding up the execution of a large number of statistical tests of independence. Proceedings of ASAI 2010, Argentinean Symposioum of Artificial Intelligence.
.
2010. Segmentación de imágenes en viñedos para la medición autónoma de variables vitícolas. XVIII Congreso Argentino de Ciencias de la Computación.
.
2012.