
Strategies for piecing-together Local-to-Global
Markov network learning algorithms

F. Schlüter, F. Bromberg, L. Abraham

{federico.schluter, fbromberg, leandro.abraham}@frm.utn.edu.ar
Laboratorio DHARMa de Inteligencia Artificial.

Dept. Sistemas de Información, Facultad Regional Mendoza,
Universidad Tecnológica Nacional, Mendoza, Argentina

Abstract. We introduce in this work a set of strategies for improving
the piecing-together step in Local-to-global Markov networks structure
learning algorithms. For Markov networks, Local-to-global algorithms
decompose the problem of learning a complete independence structure
with n variables into n independent Markov blanket learning problems.
On a second step these algorithms piece-together all the learned Markov
blankets into a global structure using an “OR rule”. Insufficient data
may result in incorrect learning of Markov blankets, with conflicts in
their decision on edge inclusion when, for two variables X and Y , X is
in the blanket of Y , but Y is not in the blanket of X. In such cases the
“OR rule” always decides to add the edge, making mistakes when such
edge does not exist. Our contribution are alternative strategies. The first
alternative is based on the “AND rule” which proposes to add an edge
between two variables X and Y to the global structure if they mutually
belongs to its respective Markov blankets. The other alternative rule is
based on the probability of the edges and aims to solve an inconsistency
by comparing the probability of edge existence with the probability of
edge absence, and taking the more probable for deciding to add or re-
move such edge. At the end of the work we show that inconsistencies are
an important source of errors in this algorithms, and demonstrate empir-
ically interesting improvements in the quality of learned structures, using
this new piecing-together alternatives instead of the basic “OR rule”.

Keywords: Markov networks, structure learning, independence-based, local-
to-global learning.

1 Introduction

Graphical models are a well-established formalism for representing compactly
joint probability distributions. Markov networks, together with the well-known
Bayesian networks are widely accepted types of graphical models [17]. Such mod-
els are composed of two parts: a qualitative, and a quantitative one. The qual-
itative component is encoded in a graph G representing structural information
about the domain of a problem in the form of independence relationships be-
tween variables, known as the independence structure. The structure G contains

a node for each random variable of the domain, and a set of undirected (for
Markov networks) or directed (for Bayesian networks) edges for encoding con-
ditional independences between such variables. The quantitative component is
a set of numerical parameters θ, usually in the form of tables with real values
for quantifying the relationships in G. Since the problem of building G and θ
may be difficult and time-consuming by eliciting opinions from domain experts,
and the increasing availability of digital data, the challenge of eliciting graphical
models from data has been under intense work in the last two decades. There are
two main approaches in the literature for learning graphical models from data:
Score-Based and Independence-Based approaches.

Score-based algorithms [21, 19, 13] approach the problem as an optimization
on the space of complete models (G and θ), looking for the one with maximum
score. Some example scores in the literature are maximum likelihood, minimum
description length [12], and Pseudo-likelihood [6, 21], among others. An advan-
tage of the score-based algorithms is their resiliency to data scarceness. How-
ever, for the case of Markov networks, its learning is at the expense of important
computational costs. For each structure during the search, they require the esti-
mation of θ; computationally intensive for requiring an expensive inference step
[5]. Such estimation is an NP-hard problem, solved in practice through a data-
intensive numerical algorithm [16]. Also, for avoiding over-fitting, many of these
methods use a regularization term adding an extra hyper-parameter, whose best
value has to be found empirically (e.g., running the training stage for several
values of the hyper-parameter, potentially with cross-validation), yet another
cause of inefficiency.

Independence-based (also known as constraint-based) algorithms first learn
the qualitative part of the model (that is, G), and then, if the complete model
is required, estimate the quantitative part θ for the given structure G. Such al-
gorithms perform a succession of statistical independence tests [18] for learning
G. Each independence test consults the data for responding to a query about
the conditional independence between some input random variables X and Y ,
given some conditioning set of variables Z, resulting in an independence asser-
tion, denoted I(X,Y | Z), or a dependence assertion, denoted ¬I(X,Y | Z).
When data is scarce, these assertions may be incorrect, i.e., opposite to their
true value in the underlying model. Examples of independence tests used in
practice are Mutual Information [11], Pearson’s χ2 and G2 [1], the Bayesian
test [14], and for continuous Gaussian data the partial correlation test [18]. To
learn G, independence-based algorithms proceed iteratively, deciding on each
iteration the test to be executed based on the independences learned so far, and
then, discarding all the structures inconsistent with the independence outcome
of the test, until a single structure is left. Independence-based algorithms have
several advantages. First, they can learn G without estimating θ (contrary to
score-based algorithms, as explained before), reaching polynomial complexities
in the number of statistical tests in some cases. Another advantage is that they
are amenable to proof of correctness when some assumptions hold: positivity
of the distribution, the underlying distribution is a Markov network, and sta-

tistical tests are correct. The latter assumption is violated unless the dataset
used for learning is sufficiently large. Unfortunately, statistical tests reliability
degrades exponentially with the amount of variables involved (for some fixed
size of dataset). For good quality, these tests require enough counts in their
contingency tables, and there are exponentially many of those (one per value
assignment of all variables in the test). For example, for the χ2 test [10] recom-
mends that the test be deemed unreliable if more than 20% of these cells have
an expected count of less than 5 data points. For Bayesian networks learning,
the independence-based approach has been used by the well known SGS and
PC algorithms [18], and the family of structure learning algorithms generalized
by the Local-to-Global Learning (LGL) framework of [3]. LGL is a framework
for producing structure learning algorithms from algorithms that learn the local
neighborhood of variables in Bayesian networks (according to the Generalized
Local Learning framework of [2]). This particular type of independence-based
algorithms learns a global structure with n variables dividing the problem in n
independent local neighborhood learning problems, and constructs a global undi-
rected structure by piecing-together the local neighborhoods. In a third step,
it orients the edges of such structure. For Bayesian networks, a possible local
neighborhood of a variable X is given by its Markov blanket MB(X). In terms
of independences, MB(X) is a minimal subset of the variables in the universe V
conditioned on which all other variables are probabilistically independent of X
(formal definition in the following section). Examples of algorithms for learning
it from data are the Grow-Shrink (GS) algorithm [15], and IAMB [20], among
others. The independences encoded in a Bayesian networks results in theMB(X)
being the set of parent, children, and spouses of X in the directed graph, and
the independences encoded in a Markov network results in the MB(X) being
the set of variables directly connected in the undirected graph. In the case of
Bayesian networks, it is possible to learn the directed structure from smaller
neighborhoods than MB(X): the set of parents (P) and children (C) variables
of a node in the network, as exemplified by the HITON-PC algorithm [4] and
its corresponding structure learning algorithm HHC [3]. For Markov networks,
adaptations of the LGL approach has been proposed based on the GS local learn-
ing algorithm, resulting in the GSMN structure learning algorithm [7], and based
on an adaptation of the HITON-PC algorithm for Markov networks, resulting
in the HHC-MN structure learning algorithm [9].

The remainder of this paper is organized as follows. Section 2 presents an
overview of the state-of-the-art LGL algorithms for Markov networks, and intro-
duces the discussion about the problem of the inconsistencies that arise when
piecing-together local neighborhoods of LGL algorithms. In addition, it discusses
the main contribution of this work: a set of strategies for improving the piecing-
together step in LGL algorithms for Markov networks. Section 3 presents exper-
imental results of a comparison between different LGL algorithms and different
strategies for piecing-together. The paper concludes with a summary and possi-
ble directions of future work in Section 4.

2 Strategies for piecing together local structures

In this section we explain the outline of a general LGL algorithm for Markov
networks, together with an important source of errors in such kind of algorithms:
the inconsistencies. We also describe three instantiations of such algorithm,used
in this work as a testbed for experimentation. Finally, we present the main
contribution of this work: novel strategies for improving the piecing-together
step in LGL algorithms for Markov networks.

2.1 Local-to-global learning algorithms for Markov networks

Algorithm 1 outlines the local-to-global general strategy for Markov networks.
This is an adaptation for Markov networks learning of the HHC algorithm, a
state-of-the-art LGL algorithm for Bayesian networks presented in [3], omitting
only the last step, in which the edges are oriented. The algorithm starts by divid-
ing the problem in n independent Markov blanket learning problems. Then, the
algorithm pieces-together all the learned Markov blankets into a global structure
using an “OR rule”, that is, the global structure is constructed adding an edge
between two variables X and Y if and only if X ∈ MB(Y) OR Y ∈ MB(X).

Algorithm 1 LGL for Markov networks

1: Learn MB(X) for every variable X in the domain.
2: Piece-together the global structure using an “OR rule”.

We now sketch the correctness of this approach. For that, let us first define
formally the Markov blanket concept:

Definition 1 (Markov blanket, [17], p.97). A Markov blanket of some ran-
dom variable X ∈ V is the minimal set MB(X) that shields the probabilistic
influence of every other variable with X, i.e., the set MB(X) ⊆ V − {X} such
that

∀Y ∈ V − {X}, Y /∈ MB(X) ⇒ I(X,Y | MB(X)− {Y }) (1)

The fact that blankets of all variables then can be combined to construct the
global structure G is proved by Corollary 2 of [17], p.98, which asserts that
the independence structure G of any strictly positive distribution over V can be
constructed by connecting each variable X ∈ V to all members of its MB(X).
Formally,

∀Y ∈ V − {X}, Y ∈ MB(X) ⇔ E(X,Y), (2)

where E(X,Y) means that there is an edge between X and Y in the graph G.

2.2 Unreliable tests: solving inconsistencies

It can be proven [17] that whenever tests are correct, an edge (X,Y) exists in
the network if and only if X ∈ MB(Y) and Y ∈ MB(X). As discussed, tests
may be incorrect when data is scarce, resulting in inconsistencies in the Markov

blankets. A Markov blanket inconsistency, or simply inconsistency, between two
variables X and Y happens when Y ∈ MB(X), but X /∈ MB(Y), (or vice
versa). Figure 1 illustrates inconsistencies. Case (a) shows an undirected graph
for n = 3 and V = {0, 1, 2}, with correct blankets for variables 0, 1, and 2 shown
in (b), (c) and (d), respectively. In this figure the directed edges in the graph
indicate that a variable belongs to the blanket of the target variable (should
not be confused with the directed edges of structures in Bayesian networks).
Illustrations (e), (f), and (g) show some example learned blankets of variables
0, 1, and 2, respectively. One can observe inconsistencies in these illustrations
between variables 0 and 1 (1 ∈ MB(0) but 0 /∈ MB(1)), and between 0 and 2
(2 /∈ MB(0) but 0 ∈ MB(2)).

When blanket inclusion X ∈ MB(Y) is interpreted as edge existence, in-
consistencies are clearly a source of error. The “OR rule” solves this by simply
deciding edge inclusion, but there is no basis for this assertion.

2.3 Instantiations of LGL algorithms for Markov networks

In this section we describe three instantiations of Algorithm 1: GSMN [7], HHC-
MN [9], and LGL-IBMAPHC (introduced in this work). The only difference
between them is the Markov blanket learning algorithm they use. GS [15], HI-
TON [4], and IBMAPHC [9] are the algorithms used for learning MB of variables
for the GSMN, HHC-MN, and LGL-IBMAPHC algorithms, respectively.

First we explain the HITON and GS algorithms, described in detail in Al-
gorithm 2 and Algorithm 3, respectively. Since they are similar we will describe
the features that they have in common. Its input parameters are: X, the target
variable for which the Markov blanket is learned; V, the set of all the variables in
the domain; D, a dataset used for testing independence; and SIT , a Statistical
Independence Test. Both algorithms consist in three phases: initialization, grow
and shrink. The initialization phase populates the FIFO queue called OPEN
with variables V − {X}, sorted by the unconditional dependency between X
and each variable, using the statistical test of independence SIT. Each iteration
of the grow phase considers adding a variable Y in OPEN to the current set of
tentative Markov blanket TMB(X). For symmetry with the shrink phase, this

Fig. 1. (a) An example undirected graph for n = 3, and its correct MB for the three variables 0,
1 and 2 in (b),(c) and (d), respectively. Directed edges denote membership to the Markov blanket
(should not be confused with directed edges of structures in Bayesian networks). Graphs in (e), (f)
and (g) show example learned Markov blankets and the inconsistencies that arise: 1 ∈ MB(0) but
0 /∈ MB(1), and 0 ∈ MB(2) but 2 /∈ MB(0).

Algorithm 2 HITON (X, V, D, SIT)

1: /* Initialization phase */
2: TMB(X)← ∅
3: OPEN ← V − {X}
4: Sort in ascending order the variables in OPEN according to SIT(〈X,Y, ∅〉, D).

5: while OPEN 6= ∅ do
6: /* Grow phase */
7: Y ← pop(OPEN)
8: add Y to TMB(X)
9: if ∃Z ⊆ TMB(X)− {Y } : SIT (〈X,Y,Z〉) then
10: remove Y from TMB(X)
11: /* Shrink phase */
12: for each variable Y ∈ TMB(X) do
13: if ∃Z ⊆ TMB(X)− {Y } : SIT (〈X,Y,Z〉)) then
14: remove Y from TMB(X)
15: return TMB(X)

proceeds by first adding it to TMB(X) and testing if it should be eliminated
using an elimination criteria. The shrink phase removes each false positive Y
in TMB(X) using the same elimination criteria. The first difference between
algorithm 2 and 3 is the elimination criteria used. As shown in lines 9 and 13
of the Algorithm 2 this algorithm checks for independence of the variables X
and Y , conditioned on its tentative Markov blanket or any of its subsets. On
the other hand the Algorithm 3 on lines 9 and 13 checks for independence of
the variables X and Y , conditioned on its tentative Markov blanket. The second
difference between them is the order of execution of the Shrink phase. As we
can see, in the Algorithm 2 it is executed interleaved into the Grow phase (line
12). The Algorithm 3, however executes this phase outside the loop of the Grow
phase (line 12). As explained before, HITON and GS learns the exact Markov
blanket when tests are correct, otherwise, HITON has been proven empirically
to be more robust [2].

The third instantiation of the LGL generic approach of Algorithm 1 consid-
ered for experimentation is LGL-IBMAPHC, that learns the MB using a varia-
tion of the IBMAPHC algorithm [9]. IBMAPHC is a recent algorithm for learning
the complete independence structure, with comparable results to the HHC-MN
algorithm. It performs a hill-climbing search over the space of graphs G looking
for the one which maximizes the IB-score, a score of the posterior probabili-
ties of graphs Pr(G | D). The LGL-IBMAPHC proposed here constructs the
global structure following the steps of Algorithm 1, and learning the Markov
blanket for all the variables with the IBMAPHC algorithm, adapted for Markov
blankets learning, instead of global structure learning. Such simple adaptation
is done by adapting the score of total structures to the score of Markov blan-
kets Pr(MB(X) | D), and adapting the hill-climbing search for using the search
space of Markov blankets, instead of graphs.

The IB-score for complete structures is computed using a set of indepen-
dence assertions which are sufficient for determining G completely,called a clo-

Algorithm 3 GS (X, V, D, SIT)

1: /* Initialization phase */
2: TMB(X)← ∅
3: OPEN ← V − {X}
4: Sort in ascending order the variables in OPEN according to SIT(〈X,Y, ∅〉, D).

5: while OPEN 6= ∅ do
6: /* Grow phase */
7: Y ← pop(OPEN)
8: add Y to TMB(X)
9: if SIT (〈X,Y, TMB(X)− {Y }〉) then
10: remove Y from TMB(X)

11: /* Shrink phase */
12: for each variable Y ∈ TMB(X) do
13: if SIT (〈X,Y, TMB(X)− {Y }〉)) then
14: remove Y from TMB(X)
15: return TMB(X)

sure C(G), and denoted by C(G) =
{
Ti = tGi

}c

i=1
, c = |C(G)|, where tGi ∈ {d,¬d}

denotes the value that the independence random variable Ti takes in the graph
G, that is, whether the triplet corresponding to Ti is independent or not in G
(see details in the reference). The posterior probability of G is computed by the
IB-score as follows:

IB-score(G) = Pr(C(G) | D) '
∏

(T=tG)∈C(G)

Pr(tG | D), (3)

where the posteriors Pr(T = tG | D) can be computed by the Bayesian test
of independence of Margaritis [14]. The closure set for the total structure C(G)
utilized is based on Markov blankets, defined as follows:

C(G) =
⋃
x∈V

Cx(G) (4)

Cx(G) =
{
¬I(X,Y | MB(X)− {Y })

∣∣∣ Y ∈ MB(X)
}

(5)⋃ {
I(X,Y |MB(X)− {Y })

∣∣∣ Y /∈ MB(X)
}

containing, for a given structure G, an amount of (n − 1) assertions for
each of the n variables, and this way determining completely the structure. For
computing the IB-score for MB(X), the closure is defined as a simplification
only for the variable X, containing its corresponding (n− 1) assertions.

2.4 Strategies for piecing-together local structures

This section presents the main contribution of this work, a set of alternative
strategies for piecing-together Markov blankets under the existence of incon-
sistencies. The hypothesis is that LGL algorithms producing large amount of

inconsistencies are prone to a larger reduction in erroneous edges when a good
piecing-together strategy is followed.

Currently the literature proposes only the “OR rule” (to the best of the
authors knowledge), which under an inconsistency, always adds an edge (the OR
is always satisfied for an inconsistency). As a first alternative rule, we propose
the “AND rule”, which adds an edge between variables X and Y to the global
structure only if X ∈ MB(Y) and Y ∈ MB(X). That is, under an inconsistency,
it always decides independence. Such rule seems to be more robust for adding
correct dependencies, since it only adds an edge between two variables when such
dependency is learned in both directions. On the other hand, it may produce
larger amounts of incorrect independences.

In addition, we propose a ‘soft’ strategy we call the “EP rule” (Edges Prob-
ability rule). Under an inconsistency, it decides to add an edge only if the prob-
ability of edge existence Pr(E(X,Y)) is larger than the probability of edge
non-existence Pr(¬E(X,Y)), thus its name.

We now show that the probabilities of edge existence and non-existence can
be computed by the probabilities of certain independences. For that, let us first
prove the following Lemma,

Lemma 1.
¬I(X,Y | MB(X)− {Y }) ⇔ Y ∈ MB(X) (6)

Proof. The (⇒) direction follows directly from the counter-positive of the defi-
nition of blankets in Eq. (1). The opposite direction (⇐) is more involved, and
has been proven by Lemma 3 of [8].

Assuming the inconsistency we are solving is Y ∈ MB(X) but X /∈ MB(Y)
(equivalent conlusions for case Y /∈ MB(X) but X ∈ MB(Y) may be obtained
by symmetry), a direct Corollary of Eqs. 2 and 6 is that

¬I(X,Y | MB(X)− {Y }) ⇔ E(X,Y) (7)

and therefore

Pr(E(X,Y)) = Pr(¬I(X,Y | MB(X)− {Y })) (8)

Pr(¬E(X,Y)) = Pr(I(X,Y | MB(Y)− {X})).

In summary, the decision of edge or no edge between variables X and Y when
the algorithm finds that Y ∈ MB(X) but X /∈ MB(Y) is taken by comparing
probabilities Pr(¬I(X,Y | MB(X)− {Y })) and Pr(I(X,Y | MB(Y)− {X})).
If the former is greater, the EP rule decides there is an edge between X and Y ,
otherwise, it decides no edge. To compute these probabilities of independence
assertions we use the Bayesian test of Margaritis [14].

3 Experimental results

This section shows a comparison of the quality of structures learned by LGL
algorithms GSMN, HHC-MN, and LGL-IBMAPHC, when the different piecing-
together strategies OR, AND, and EP are used for dealing with inconsistencies.
Results show empirically the benefit of the proposed strategy EP.

GSMN HHC-MN LGL-IBMAPHC

τ
=

1

 0

 20

 40

 60

 80

 100

 120

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D

Incorrect consistencies
Incorrect inconsistencies

Correct inconsistencies

160080040020010050

 0

 5

 10

 15

 20

 25

 30

 35

 40

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D

Incorrect consistencies
Incorrect inconsistencies

Correct inconsistencies

160080040020010050

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D

Incorrect consistencies
Incorrect inconsistencies

Correct inconsistencies

160080040020010050

τ
=

2

 0

 20

 40

 60

 80

 100

 120

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

τ
=

4

 0

 20

 40

 60

 80

 100

 120

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

 0

 10

 20

 30

 40

 50

 60

 70

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

τ
=

8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

Fig. 2. Comparison between LGL algorithm, and piecing-together strategies, for n = 30, τ = 1, 2, 4, 8
and D = 50, 100, 200, 400, 800, 1600

The artificial datasets used to test the algorithms and strategies were gen-
erated using a Gibbs sampler, sampling from known random models. Knowing
the solution structure allows a systematic and controlled study of the results.
The models were generated for domains of n = 30 random binary variables. For
this domain, 10 random networks were generated, each of them with increasing
number of neighbors per node τ = {1, 2, 4, 8}, by selecting the first nτ/2 edges
of a random permutation of all variables pairs. Given these networks, datasets
with increasing number of data points D = {50, 100, 200, 400, 800, 1600} were
sampled for each (n,τ) configuration.

Each algorithm results in some inconsistencies as well as consistencies; each
of which may decide correctly or not on the corresponding edge by the piecing-
together strategy. These results in four quantities of interest: correct consisten-
cies, correct inconsistencies, incorrect consistencies, and incorrect inconsisten-
cies. Figure 2 reports the last three in white, black, and grey bars, respectively;
for increasing dataset sizes. Note that the sum of the last two (black and grey

bars) equals the Hamming distance (HD), while the sum of second and fourth
(white and grey bars) corresponds to the total number of inconsistencies . These
figures therefore gives us two important metrics: (i) the HD as a measure of er-
ror, and (ii) the proportion of inconsistencies correctly decided by each strategy
(grey bar vs sum of grey and white bars). The figure shows that the “AND rule”
presents in most cases smaller values of incorrect inconsistencies than the values
obtained by the “OR rule” (except some cases when using HHC-MN, τ = 4 and
D ≥ 100). Besides, in all cases the incorrect inconsistencies values of the “EP
rule” are smaller than the obtained by the “OR rule”. Making a comparison
between the “AND rule” and the “EP rule”, the “AND rule” is better than the
“EP rule” since the amount of incorrect inconsistencies obtained by “EP rule”
are always higher, except some particular cases where the “EP rule” is better
(that is, for HHC-MN, LGL-IBMAPHC and τ = 4). These results show that it is
possible to reduce the total HD of the structure, using different piecing-together
strategies than the simple “OR rule” for LGL algorithms.

Figure 3 reports complementary metrics: precision and recall measures. On
one hand, precision shows how good was the algorithm to learn correct edges. It
quantifies the proportion of edges learned correctly among those learned (true
positives / true positives + false positives, meaning by positive a dependency
or edge). It is a value between 0 and 1, with 1 being the best possible precision,
i.e., all edges learned were correct. On the other hand, recall reports how many
of the true edges were learned correctly (true positives / true positives + false
negatives). Also a value between 0 and 1, with 1 meaning that all the edges of
the solution structure were correctly learned.

These results show again that the strategies presented in this work make
important improvements over the precision and recall of the “OR rule”. Focusing
our analysis over the “AND rule” and the “EP rule” , the precision obtained
by “AND rule” is always higher or equal than the “EP rule”, and always both
strategies improves the precision of the “OR rule”. However, the recall values of
the “AND rule” presents lower values than those for “EP rule”. Furthermore, the
recall of “EP rule” is in most cases better or equal to those values for the “OR
rule”(except some exceptions for GSMN and LGL-IBMAPHC with τ = 4, 8).
Therefore, the structures learned with the “AND rule” introduce more false
independences than the ones learned by the “EP rule” as we can see according
to the recall results. The fact of adding false dependencies, is not as bad as
adding false independences, because false dependences result on a more complex
but still correct model; however a false independence results on a more simple
but erroneous model.In summary, the “EP rule” is better than the “AND rule”
because using the latter may introduce really important errors in the resulting
model by adding false independences.

4 Conclusions

In this work we made an analysis of the inconsistencies problem of local-to-
global Markov networks structure learning algorithms, and we introduced two

GSMN HHC-MN LGL-IBMAPHC

τ
=

1

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D

Precision
Recall

160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D

Precision
Recall

160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D

Precision
Recall

160080040020010050

τ
=

2

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

τ
=

4

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

τ
=

8

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

0

0.5

1

0.5

1

OR AND
EP OR AND

EP OR AND
EP OR AND

EP OR AND
EP OR AND

EP

D
160080040020010050

Fig. 3. Precision and Recall comparison between LGL algorithms, and piecing-together strategies,
for n = 30, τ = 1, 2, 4, 8 and D = 50, 100, 200, 400, 800, 1600

new strategies for the piecing-together step. We proved empirically that qual-
ity of learned structures can be improved by using different strategies than the
basic “OR rule” to solve the inconsistencies. For this, we performed several ex-
periments over three local-to-global algorithms combined with three different
piecing-together strategies discussed in this work. The results obtained confirm
our hypothesis showing important quality improvements on the learned struc-
tures using the presented strategies (“AND”, “EP”) over the “OR” strategy.
Such results show also that inconsistencies are an important source of error in
local-to-global algorithms. In some cases the “AND rule” seems to be a bet-
ter choice than the “EP rule”, but it is important to remember that using this
alternative may introduce errors in the model by adding false independences.
Because of that, we recommend as the best choice the “EP rule” because it is
better than the OR alternative in all cases, and it introduces less errors in the
model than the “AND rule”. Future work could be focused in the development
or improvement of the local-to-global Markov networks structure learning algo-

rithms so that they learn the blankets with a reduced number of inconsistent
edges. Another line of work consists in further improving the “EP” strategy, or
the proposal of alternative strategies.

5 Acknowledgements

This research has been funded by the FONCyT (Argentinean National Fund for
Technology and Science) and the Universidad Tecnológica Nacional.

References

[1] A. Agresti. Categorical Data Analysis. Wiley, 2nd edition, 2002.
[2] C. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. Koutsoukos. Local causal and markov

blanket induction for causal discovery and feature selection for classification part i: Algorithms
and empirical evaluation. JMLR, 11:171–234, March 2010.

[3] C. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. Koutsoukos. Local causal and markov
blanket induction for causal discovery and feature selection for classification part ii: Analysis
and extensions. JMLR, 11:235–284, March 2010.

[4] C. Aliferis, I. Tsamardinos, and A. Statnikov. HITON, a novel Markov blanket algorithm for
optimal variable selection. AMIA Fall, 2003.

[5] F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics
A: Mathematical and General, 15(10):3241–3253, 1982.

[6] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrica,
64:616–618, 1977.

[7] F. Bromberg, D. Margaritis, and H. V. Efficient markov network structure discovery using
independence tests. JAIR, 35:449–485, July 2009.

[8] F. Bromberg and F. Schlüter. Efficient Independence-Based MAP Approach for Robust Markov
Networks Structure Discovery. 2011.

[9] F. Bromberg, F. Schlüter, and A. Edera. Independence-based MAP for Markov networks struc-
ture discovery. International Conference on Tools with Artificial Intelligence 2011, Submitted
on July 2011.

[10] W. G. Cochran. Some methods of strengthening the common χ2 tests. Biometrics, 10:417–451,
1954.

[11] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience, New
York, NY, USA, 1991.

[12] W. Lam and F. Bacchus. Learning Bayesian belief networks: an approach based on the MDL
principle. Computational Intelligence, 10:269–293, 1994.

[13] S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using
L1-regularization. In NIPS, 2006.

[14] D. Margaritis. Distribution-free learning of Bayesian network structure in continuous domains.
In Proceedings of AAAI, 2005.

[15] D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In Proceed-
ings of NIPS, 2000.

[16] T. Minka. Algorithms for maximum-likelihood logistic regression. Technical report, Dept of
Statistics, Carnegie Mellon University, 2001.

[17] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., 1988.

[18] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Adaptive Com-
putation and Machine Learning Series. MIT Press, 2000.

[19] C. Sutton and A. Mccallum. Piecewise Training for Undirected Models. In UAI05.
[20] I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Algorithms for large scale Markov blanket

discovery. In FLAIRS, 2003.
[21] Y. Yu and Q. Cheng. MRF parameter estimation by an accelerated method. Pattern Recogn.

Lett., 24(9-10):1251–1259, 2003.

